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Abstract 
A new set of resonances for electron cloud dynamics in 
the presence of a magnetic field has been found. For short 
beam bunch lengths and low magnetic fields where lb << 
2πωc, (lb = bunch duration, ωc = non-relativistic cyclotron 
frequency) resonances between the bunch frequency and 
harmonics of the cyclotron frequency cause an increase in 
the electron cloud density in narrow ranges of magnetic 
field near the resonances. For ILC parameters the increase 
in the density is up to a factor ≈ 3, and the spatial 
distribution of the electrons is broader near resonances, 
lacking the well-defined density "stripes" of 
multipactoring found for non-resonant cases. Simulations 
with the 2D computer code POSINST, as well as a single-
particle tracking code, were used to elucidate the physics 
of the dynamics. The resonances are expected to affect 
the electron cloud dynamics in the fringe fields of 
conventional lattice magnets and in wigglers, where the 
magnetic fields are low. Results of the simulations, the 
reason for the bunch-length dependence, and details of the 
dynamics will be discussed. 

INTRODUCTION 
Because of high bunch intensity and frequency, electron 

cloud effects are an important design issue in modern 
high-energy  accelerators with intense beams of positive 
charge, as well as in lower-energy accelerators of intense 
ion beams. As an example, in the International Linear 
Collider (ILC) bending of the beam in the positron 
damping ring will produce copious synchrotron radiation.  
This then will generate photoelectrons, which in turn 
create secondaries.  The resultant electron cloud is 
expected to cause emittance growth and beam instability, 
limiting the average beam current. To quantify the cloud 
density and distribution for ILC damping ring parameters, 
a series of computer simulations was done with the 2D 
computer code POSINST [1].  Of interest is the area of 
the wiggler, where the magnetic field varies from zero to 
about 2 T.  Results showed that above a certain threshold 
in magnetic field magnitude, B, the cloud density 
calculated was a smooth function of B.  Below this 
threshold there were large (x3) increases in the density 
over very narrow ranges of B which had a strict 
periodicity.  This paper discusses and explains this 
enhancement of the electron cloud density and shows that 
it is due to resonances between the beam passage and the 
electron cyclotron frequency. 

SIMULATION MODEL 
Since POSINST is a 2D code, in order to simulate the 

wiggler a series of runs was done where each run 
approximated a transverse slice of the wiggler as a dipole 
(Bx=Bz=0, By constant).  Photon reflectivity was assumed 
to be unity—i.e., photoelectrons were formed in a 
distribution uniform in azimuthal angle.  Since the 
electrons are tied to field lines and therefore only sample 
a limited region in x, this choice of reflectivity permitted 
investigation of the dynamics at all x. The physical and 
numerical parameters used in the simulations are shown 
in Table 1.   

The beam bunch density was assumed to be Gaussian 
in x,y, and z and centered in the circular vacuum chamber. 
The centroid motion due to the wiggler field was not 
included in the model.  The bunch distribution was not 
allowed to evolve during the simulation.  It is assumed 
that such evolution is negligible during the few 
microseconds of the cloud buildup.  All electrons were 
assumed to be formed either by photoionization or by 
secondary emission due to wall impact of the 
photoelectrons—ionization of background gas was 
assumed to be negligible.  Further details of the model 
and results not shown here can be found in ref. [2]. 

 
Table 1: Parameters for all Simulations 

 
Bunch spacing, τb 6.15 ns  
σx   (beam) 112 µm 
σy   (beam) 4.6 µm 
σz   (beam) 6.0 mm 
Full bunch length ±2.5 σz 
Photons emitted per 
positron per meter 

0.07 

Quantum efficiency 0.1  
Peak secondary electron 
yield at normal incidence 

1.4 

PIC spatial grid cell size 0.36 mm 
Integration Time Step 1.25 x 10-11 s 
Vacuum pipe radius, a 2.3 cm 

SIMULATION RESULTS 
As beam bunches pass a given location in the damping 

ring, the electron cloud builds up until the loss of 
electrons due to electron space charge repulsion balances 
their production, thus attaining an equilibrium value.  
Figure 1 shows the "equilibrium average density" for the 
electron cloud as a function of n≡ωc/ωb, where ωc is the 
nonrelativistic electron cyclotron frequency and ωb=2π/τβ, 
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where τβ is the time interval between passages of 
successive bunch centers.  Thus n∝B.  The equilibrium 
average density is the total number of electrons at 
equilibrium in the chamber divided by the chamber 
volumey.  Note that the "+" marks on the figure denote 
simulation results.  Lines are only provided to guide the 
eye.  A horizontal expansion of this graph shows that all 
peaks are at integral multiples of n, and at every integral 
value of n where a run was done the density was 
enhanced.  Thus, if more runs had been done the peaks 
would be seen to be evenly spaced in n—areas where the 
peaks seem to be sparser simply reflect the fact that 
simulations were not done to outline all 100 peaks.   

 
Figure 1:  Equilibrium average density vs. n 

The spatial distribution of electrons is different at B 
values where the density is enhanced.  Figure 2 shows the 
density as a function of x and y for B=0.07 T (n=12) and 
B=0.08 T (n=13.8).  The density shown in the figure is 
integrated over the full time of the simulation, but since 
most of the simulation is spent during the equilibrium 
phase, it is weighted heavily toward this phase.  At 
n=13.8 the well-known vertical stripes of high-density are 
seen.  These form where the kick from the beam gives 
electrons an energy which is near the peak of the function 
giving secondary electron yield vs. energy [3].  But at 
n=12 the electrons are much more evenly distributed.  
Thus, depending on photon reflectivity, at magnetic field 
values where n is integral the effect of the electron cloud 
on the beam and the power deposition by the electrons at 
the wall can be quite different from the well-known 
picture at nonintegral n.  

  

 
Figure 2:  Density distribution for a resonant (0.07T) and 
non-resonant (0.08T) case.  Vacuum chamber is circular 
and fits exactly within the plot. 

The fact that the electron density enhancement occurs 
when the cyclotron frequency is an integral multiple of 
the bunch frequency suggests that the increased density is 
due to a resonance between the appearance of the bunch 
and the position of an electron in its cyclotron orbit.  
Since the magnetic field is uniform in this problem, all 
electrons in the system have the same cyclotron 
frequency, unless they acquire enough energy for a non-
negligible relativistic mass increase.  Simulation data 
shows that such a mass increase occurs only for a very 
small fraction of the electron population.  For the rest, 
then, each time the beam appears the electron will be at 
the same position in its cyclotron orbit.  Note that for low 
B, in the range of the highest density peaks in Fig. 1, the 
time for the beam to pass an electron is much less than the 
cyclotron period, i.e., 

 

                                 

€ 

B << 2π mec
elb

                                 (1) 

 
where lb is the bunch length, c is the speed of light, and 
me is the electron mass.  Thus the electron experiences the 
force of the beam as essentially an instantaneous kick at 
one point in its gyro-orbit. The beam force is in the x-y 
plane-- z forces are neglible because the beam velocity is 
approximately c.  The y force accelerates the electron 
vertically, i.e., parallel to the magnetic field. The force in 
the x direction accelerates the electron in the plane of its 
cyclotron gyration, the x-z plane.  The direction of this 
force is toward the y axis so it will rotate the 
perpendicular (to B) component of the electron velocity 
toward this direction.  For the case of an intense beam 
like the ILC beam, it only requires a few kicks to align the 
electron velocity at the time of the bunch passages with 
the x component of the bunch electric field, after which 
the kick of each bunch will simply increase the 
perpendicular velocity.  The effect of the resonance, then, 
is to synchronize the phases of the electrons in their 
cyclotron motion, increase the perpendicular energy of the 
electrons, and thereby also increase the angle (to the 
normal of the surface) with which electrons hit the 
chamber wall as they travel along the B field lines.  The 
dependence of the secondary electron yield on the impact 
energy and angle is shown in Fig. 3.  From this it can be 
seen that both the increase in energy and the increase in 
the angle to the surface normal will increase the yield of 
secondary electrons.  This accounts for the density spikes 
of Fig. 1.  Figure 4 displays POSINST results showing the 
difference in electron energy spectrum and spectrum of 
the cosine of the impact angle for cases of B on and off 
resonance. 

Calculations without electron space charge were done 
to demonstrate the electron dynamics in a simpler system.  
The force of the beam was approximated by an 
instantaneous kick.  For resonant B values results did 
indeed show the phases of the electrons in their gyro-
orbits at the time of the bunches' arrival converging over 
time to lock into a direction parallel to the x component of 



the beam force.  The electron perpendicular energy 
increased, causing an increase in the mass and detuning of 
the gyrophase.  However this detuning occurred after 
several bunch passage times, by which time all but a few 
electrons had left the system.  In all respects the single 
particle calculations confirmed the description above of 
the dynamics of the resonance.   

   

 
Figure 3:  Secondary electron yield vs. electron impact 

energy and angle to the surface normal for our parameters 

 

 
Figure 4:  Spectra of impact energy and angle to the 
surface normal of electrons hitting the wall during cloud 
buildup for n=12 (red) and n=11 (black). 

As the magnetic field increases, the cyclotron 
frequency increases, and Eq. (1) is no longer valid.  The 
beam force now occurs over a significant portion of the 
cyclotron period.  Since the electron velocity is changing 
direction during the beam passage, the electron will be 
both accelerated and decelerated during that time, so that 
much of the effect of the beam in the perpendicular 
direction is cancelled.  This is the cause of the decrease of 
the density peak amplitude with increasing B in Fig. 1.   

Finally, we note that at low n the density peaks have a 
complicated structure, with a minimum near integral n, 
which disappears as n increases.  This is shown in Fig. 5. 
Electron statistics for a case near peak density at n=1.93 
were compared to those at n=2 in order to clarify the 
dynamics at low n.  The cloud buildup in both cases was 
similar, diverging only after space charge was significant.  
The presence of space charge made it difficult to see a 
simple explanation for the difference.  We do note, 
however, that electrons at n=2 on average stay in the 
system longer than those at n=1.93.  They thus attain 
higher energy.  But at n=1.93 the shorter confinement 
time of the electrons in the system, and thus higher impact 
rate at the wall, more than compensates for somewhat 
lower impact energy so that more secondary electrons 
were produced.  Though the difference of confinement 
time accounts for the decline in cloud density at the 
resonance, we have no theory at this time which explains 
the longevity of electrons at different B field values. 

 

 
Figure 5:  Equilibrium average density vs. n for low n. 

ANALYTICAL MODEL 
A simplified analytical model of the electron dynamics 
can be used to derive many of the characteristics of the 
electron motion described above.  We make the following 
assumptions:  (1) the electrons remain non-relativistic, 
even at resonance, (2) space-charge forces and image 
forces from the vacuum chamber are neglected, (3) 
electron cyclotron radius << chamber radius, (4) 
σt<<2π/ωb, where σt is the RMS bunch duration; (5) we 
do not include electron motion which impacts the 
chamber walls, and (6) we restrict our attention to only 
those electrons with small vertical amplitude. The line 
charge density of the positron beam at time t and 
longitudinal location z is given by 
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λ(z,t) = eNb
e−(z−ct+kcτ b )

2 /(2σ z
2 )

2πσ zk= 0

∞

∑                  (2)                                     

where the summation is over successive bunches. While 
in a real accelerator the number of bunches is finite, the 
infinite upper limit in the above summation does not 
affect the results in the analysis that follows.  
 
The electric field generated by the beam is 
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E(x,y,z,t) =
λ(z,t)
4πε0

G(x,y)                    (3)                             

where G(x,y) , with dimensions of 1/length, is the 2-
dimensional Bassetti-Erskine field. The magnetic field B 
has an external component B=B

€ 

ˆ y  plus the contribution 
generated by the beam, Bb ≈ –

€ 

ˆ z  × E/c.  The contribution 
from this latter component to the v×B force is at most eβE 
(where β=v/c), hence down by a factor of v/c relative to 
the electric force, hence negligible in magnitude 
compared to E.  Very near to the beam, especially for low 
values of the dipole field, the magnetic field of the beam 
will change the direction of the B field for the short time 
that a bunch is present.  This effect is not present in the 
POSINST calculations or in this analysis, and will be 
explored in future work.    

We first solve the equations of motion neglecting the 
field from the beam. The equations are then 

                              

€ 

˙ v x =ωvz

˙ v y = 0
˙ v z = −ωvx

                                (4)  

where ω=eB/me. The solution in the x-z plane is  

                   

€ 

v f ,z = −ωρ0 sin(ωt + φ0)
v f ,x = +ωρ0 cos(ωt + φ0)

    (5) 

where the subscript "f" stands for "free" (i.e., in the 
absence of the beam). The gyroradius ρ0 is determined by 
the initial condition, ωρ0 = v⊥0, where v⊥0  is the initial 
speed in the x-z plane; φ0 is the initial phase.  The 
solutions for x and z are: 

                 

€ 

z f (t) = zc + ρ0 cos(ωt + φ0)
x f (t) = xc + ρ0 sin(ωt + φ0)

    (6) 

where (z c,xc) = (zf,0 - vf,x0/ω, xf,z0 + vf,z0/ω) is the gyrocenter 
in the (x-z) plane expressed in terms of the components of 
the velocity at t=0. As for the motion in y, it is free-
particle motion: vy=vy0 and y=y0+vy0t.  

From the original equations of motion we have: 

     

€ 

˙ ̇ v z +ω 2vz =
ω 2Ex

B

=
eNbω

2Gx (x,y)
4πε0B

e−(z−ct +kcτ b )2 /(2σ z
2 )

2π σ zk= 0

∞

∑
         (7) 

Under our stated assumptions we can derive an 
approximation to this equation by setting x, y and z in the 
right-hand side to their values at t=0, keeping only the 

essential time dependence in the exponential factor. 
Without any loss of generality we choose z0=0, hence 
 

€ 

˙ ̇ v z +ω 2vz ≈
eNbω

2Gx (x0,y0)
4πε0Bc

e−(t−kτ b )2 /(2σ t
2 )

2π σ tk= 0

∞

∑    (8)

        
which is the equation for a driven harmonic oscillator. We 
readily find vz = vf,z(t) + vd,z(t), where the free part, vf, is 
given by Eq. (8) and the driven part is given by  
     

€ 

vd ,z (t) = θ(t)κ NbrecGx (x0,y0)A(K,n)sinξ   (9) 

where θ(t) is the conventional step function, 

€ 

κ = e−(ωσ t )
2 / 2 , K is the largest integer ≤t/τb, n=ωτb/2π, re 

= e2/(4πε0mec2) ≈ 2.82×10–15 m is the classical radius of 
the electron, ξ=ωt-πnK, and the amplitude A is given by 

                    

€ 

A(K,n) =
sin(π n(K +1))
sin(π n)

.               (10)                                     

To complete the derivation we note that 

€ 

me ˙ v z = −eB˙ x , hence x(t) = x0 – (vz(t)-vz0)/ω. We obtain 
vx(t) = vf,x(t)+vd,x(t), where  

     

€ 

vd ,x (t) = θ(t)κ NbrecGx (x0,y0)A(K,n)cosξ        (11)  

and z(t) = zf (t)+zd (t) and x(t) = xf (t)+xd (t) where the 
driven parts are given by  

  

€ 

zd (t) = −θ(t)κ NbrecGx (x0,y0)A(K,n)cosξ /ω
xd (t) = +θ(t)κ NbrecGx (x0,y0)A(K,n)sinξ /ω

 (12) 

The 1st-order equation for motion in y can be obtained 
in similar fashion, but it does not add much useful 
information to the discussion. One finds that those 
electrons for which the x component of the gyrocenter, xc, 
is comparable to or slightly smaller than the chamber 
radius a oscillate harmonically about y=0 with an angular 
frequency 

                          

€ 

ωy ≈
2Nbrec
xc
2τ b

                            (13) 

but those electrons whose gyrocenter xc is within ~a/2 of 
the pipe center (x=0) are very unstable under the action of 
the beam, and are driven to the wall of the chamber 
within one to a few bunch passages (for the parameter 
values in Table 1).   

Equations (9), (11) and (12) are the basic result of this 
analysis. The amplitude A(K,n) is responsible for the 
linear growth in time of the motion whenever n = ωτb /2π 
is an integer, because in this case A(K,n)=K+1, which 
grows with time. Thus the driven component of the 
amplitude quickly dominates the motion, the initial phase 
φ0 and amplitude ωρ0 become irrelevant, and the phase of 
the horizontal velocity (Eqs. (9) and (11)) is uniquely 
determined by the beam driving force. One readily finds 
from Eqs. (9-11) also the synchronization of the electron 
cyclotron phase discussed in the last section.  For integer 
n, the electron energy therefore grows like |A|2~t2, 
explaining why in this case the electron-wall collision 
energy is larger than for non-integer n. Finally, if the 



bunch length is too large, or the B field too strong, the 
resonant growth of the amplitude is suppressed by the 

phase-averaging factor 

€ 

κ = e–(ωσ t )
2 / 2  [4]. 

EXPERIMENTAL OBSERVATION OF 
RESONANCES 

An experiment in a chicane at the PEP-II positron 
storage ring was used to experimentally observe the 
cyclotron resonances.  Details of the experiment can be 
found in ref. [5].  Each of three dipoles in the chicane was 
instrumented with a retarding field analyzer (RFA) 
located at the top of the vacuum chamber.  The RFA 
collectors were segmented in x into 17 stripes which 
could be biased in order to measure the electrons' vertical 
kinetic energy.  The vacuum wall was aluminum, but in 
the second dipole a TiN coating was used to decrease the 
secondary emission of the wall.  Results are shown in Fig. 
6.  Increases in density can be seen which are periodic in 
B, and their spacing is identical to what is expected for 
the resonances described above.  However there are 
complicated features not evident in the simulations.  For 
the aluminum surface, data from the collector stripe 
farthest from the beam (x=29 mm) showed clear 

resonance peaks at the expected integer n values.  
Collector stripes closer to the beam axis (x = 0), showed 
peaks with a double-spike structure. This effect was so 
severe that at x = ± 5 mm, the signal enhancement had 
shifted to half-integer values of n. This was not observed 
for TiN-coated surface, where resonances occurred for 
integer n (at large n) for all collector stripes.  It is 
unknown at this point whether these complicated features 
are related to effects of the RFA or to 3D field effects or 
something as yet undiscovered.  The chicane experiment 
has been moved to Cornell University and installed at 
CESR-TA, and experiments and analysis will continue 
there in order to clarify these results.   
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